Rigid Local Systems and Finite Symplectic Groups

نویسنده

  • NICHOLAS M. KATZ
چکیده

For certain powers q of odd primes p, and certain integers n ≥ 1, we exhibit explicit rigid local systems on the affine line in characteristic p > 0 whose geometric and arithmetic monodromy groups are Sp(2n, q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Local Systems and Alternating Groups

In earlier work [Ka-RLSFM], Katz exhibited some very simple one parameter families of exponential sums which gave rigid local systems on the affine line in characteristic p whose geometric (and usually, arithmetic) monodromy groups were SL2(q), and he exhibited other such very simple families giving SU3(q). [Here q is a power of the characteristic p, and p is odd.] In this paper, we exhibit equ...

متن کامل

Symplectic Integrators for Systems of Rigid Bodies

Recent work reported in the literature suggest that for the long-term integration of Hamil-tonian dynamical systems one should use methods that preserve the symplectic structure of the ow. This has especially been shown for the numerical treatment of conservative many-particle systems as they arise, e.g., in molecular dynamics and astronomy. In this paper we use recent results by McLachlan 10] ...

متن کامل

Seismic Wave-Field Propagation Modelling using the Euler Method

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...

متن کامل

Symmetries of Finite Heisenberg Groups for Multipartite Systems

A composite quantum system comprising a finite number k of subsystems which are described with position and momentum variables in Zni , i = 1, . . . , k, is considered. Its Hilbert space is given by a k-fold tensor product of Hilbert spaces of dimensions n1, . . . , nk. Symmetry group of the respective finite Heisenberg group is given by the quotient group of certain normalizer. This paper exte...

متن کامل

m at h . N A ] 1 7 Se p 19 99 DISCRETE EULER - POINCARÉ AND LIE - POISSON EQUATIONS

In this paper, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory are developed for systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are G-invariant. These discrete equations provide “reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018